Standardbaureihe Öl-Luft-Kühler

Änderungs	svermerk
Ausgabe	12-2016 Umrechnungsfaktoren ü.N.N auf Seite 06 hinzugefügt.
Ausgabe	10-2016 Ersatzteilliste hinzugefügt
Ausgabe	10-2015 Zeichnung Seite 04 geändert
Ausgabe	07-2018 Geräuschpegel geändert
Ausgabe	09-2019 50 in 60 Hz auf Seite 03 geändert.
Ausgabe	08-2022 Auf Seite 04 das Maß " J " berichtigt.

AKG-Line A - Baureihe

Öl- / Luft-Wärmetauscher mit Drehstromantrieb

Hochleistungskühler aus Aluminium 17 - 26 bar Betriebsdruck patentiertes **double-life AKG-Lochprofil** mit Bypass-Ventil lieferbar

Seite 01 Beschreibung A + AR Baureihe

02 Beschreibung AY Baureihe mit Pumpe

03 Bestellinformationen + Typenschlüssel

04 Einbaumaße

05 Kühlleistung + Technik

06 Umrechnungsfaktoren + Motorgröße

07 Thermostate

08 Einbau, Wartung und Garantie

09 Ersatzteilliste

Ausgabe 08-2022

Als PDF-Datei unter www.bk-systems-germany.de Technische Änderungen vorbehalten © bei BK-Systems Germany GmbH

Produktinformation

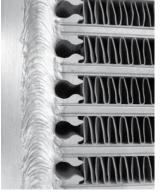
AKG - Line ist die Standardbaureihe des Marktführers für Hochleistungskühlanlagen aus Aluminium. AKG steht für weltweite Präsens, deutsches Engineering und überzeugend zuverlässige Produktqualität mit wettbewerbsfähigen Preisen.

Die AKG - Line Serien sind in unterschiedlichen Ausführungen für den mobilen und stationären Einsatz in Hydraulikanlagen konzipiert.

Die Baureihe umfasst universell einsetzbare Komplettanlagen nach europäischem und amerikanischem Standard, für normale und verschmutzungsanfällige Betriebsbedingungen.

Alle Kühler sind mit Drehstromantrieb (A-Serie), Gleichstrombebläse (D-Serie) oder Hydraulikmotor (H-Serie) lieferbar. Low-Noise-Versionen sind wie bei der T-Serie lieferbar.

Alle AKG-Lösungen sind in modernster Technik entwickelt, nach höchsten Qualitätsstandards produziert und umfassend im firmeneigenen Versuchszentrum getestet.

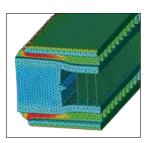

Eigenschaften

- Hochleistungskühlanlage aus Aluminium mit Anbauteilen
- Lüfter wird mit Gleichstrommotor angetrieben
- Die abzuführende Wärme wird aus dem zu kühlenden Medium an die Umgebungsluft abgegeben
- Universell einsetzbar in Hydrauliköl, Getriebeöl, Motoröl, Schmieröl- sowie in Kühlmittelkreisläufen
- Zur Kühlung von Mineralöl, Synthetischem Öl, Bioöl, HFA, -B, -C und D-Flüssigkeiten, Wasser mit mindestens 50 % Frost- und Korrosionsschutzmittel. Andere Medien auf Anfrage.
- Belastbar mit Betriebsdrücken bis 26 bar

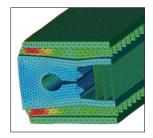
Vorteile

- Größte und umfangreichste Baureihe für Mobilhydraulik-Kühler
- Komplettanlagen für den sofortigen Einsatz
- Kompaktes robustes Design, bewährt im jahrelangen harten Praxiseinsatz
- Beste Kühlergebnisse durch umfassende Forschung und Entwicklung
- Beste Qualit\u00e4t durch professionelles Engineering und eigene Fertigung
- Kurzfristige Verfügbarkeit durch Lagerhaltung der Anlagen und Anbauteile
- Serienmäßig augestattet mit dem patentierten AKG double-life Lochprofil.
- Standartmäßig mit verschmutzungsunempfindlichen Kühlluftlamellen ausgerüstet.

Patentiertes AKG - Lochprofil


Bei den AKG-Line Kühlern kommt das patentierte flexible AKG-Lochprofil zum Einsatz.

Damit werden örtliche Spannungsspitzen reduziert.


Die Festigkeit und die Lebensdauer von Wärmetauschern wird damit um ein vielfaches erhöht

Merkmale des AKG - Lochprofils

- Reduzierung der Materialspannungen.
 Festigkeitberechnungen zeigen, dass maximale Spannungen mit dem Lochprofil um den Faktor 2 verringert werden.
- Erhöhung der Lebensdauer.
 Umfangreiche Prüfstandsuntersuchungen und Dauertests haben gezeigt, dass die Lebensdauer um den Faktor 3 - 5 zunimmt.

Querschnitt durch ein Kühlernetz mit dem Standardprofil

Querschnitt durch ein Kühlernetz mit dem double-Life Lochprofil

Produktinformation

AKG - Line ist die Standardbaureihe des Marktführers für Hochleistungskühlanlagen aus Aluminium. AKG steht für weltweite Präsens, deutsches Engineering und überzeugend zuverlässige Produktqualität mit wettbewerbsfähigen Preisen.

Die AKG - Line Serien sind in unterschiedlichen Ausführungen für den mobilen und stationären Einsatzfall über unser globales Service-Händlernetz erhältlich.

Die Baureihe umfasst universell einsetzbare Komplettanlagen nach europäischem und amerikanischem Standard, für normale und verschmutzungsanfällige Betriebsbedingungen.

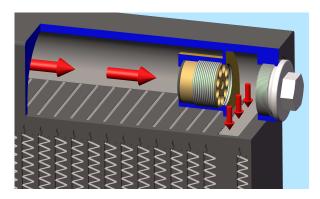
Alle Kühler sind mit Drehstromantrieb (A-Serie), Gleichstrombebläse (D-Serie) oder Hydraulikmotor (H-Serie) lieferbar. Low-Noise-Versionen sind wie bei der T-Serie lieferbar.

Alle AKG-Lösungen sind in modernster Technik entwickelt, nach höchsten Qualitätsstandards produziert und umfassend im firmeneigenen Versuchszentrum getestet.

Eigenschaften der AY-Baureihe

- Hochleistungskühlanlage aus Aluminium mit Anbauteilen
- Zur Vermeidung von Überbeanspruchungen bei Kaltstarts und erhöhten Ölströmen
- Lüfter wird mit Drehstrommotor angetrieben
- Die abzuführende Wärme wird aus dem zu kühlenden Medium an die Umgebungsluft abgegeben
- Universell einsetzbar in Hydrauliköl, Getriebeöl, Motoröl, Schmieröl- sowie in Kühlmittelkreisläufen
- Zur Kühlung von Mineralöl, Synthetischem Öl, Bioöl, HFA, -B, -C und D-Flüssigkeiten, Wasser mit mindestens 50 % Frost- und Korrosionsschutzmittel. Andere Medien auf Anfrage.
- Belastbar mit Betriebsdrücken bis 17 bar
- Max. Betriebstemperatur bis 120 °C
- Standardausführung Bypassventil mit 2,0 bar Öffnungsdruck (andere Öffnungsdrücke auf Anfrage erhältlich)
- Das Bypassventil kann von außen kontrolliert, gewechselt und gewartet werden.
- Kühlernetz wie bei den Baureihen A, D + H mit dem patentierten double-Life Lochprofil

Vorteile

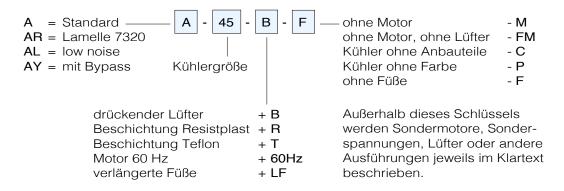

- Größte und umfangreichste Baureihe mit BypassVentil für die Mobilhydraulik
- Kompakte Bauweise, da Bypass im Kühler integriert
- Schnelleres erreichen der Betriebstemperatur
- Komplettanlagen für den sofortigen Einsatz
- Kurzfristige Verfügbarkeit durch das Baukastensystem und Lagerhaltung aller Anlagen und Anbauteile

Funktionsweise des Bypass-Ventils

Besonders bei großen Ölströmen oder bei Kaltstarts, mit niedrigen Öltemperaturen und hohen Ölviskositäten, kommt es zu hohen Drücken innerhalb des Ölkühlers.

In diesem Fall wird ein Teil des Volumenstromes über den integrierten Bypass am Kühlernetz vorbeigeführt. Der Ölkreislauf wird dabei nicht unterbrochen.

Eine Überbeanspruchung wir somit wirkungsvoll vermieden.


Auf die aufwendige Installation eines externen Bypasses kann verzichtet werden. Dadurch werden Kosten und Einbauraum reduziert.

Bestellbeispiel

A-45 Kühler mit Drehstrom-Motor 400V-50Hz, saugend.
 A-45-B Kühler mit Drehstrom-Motor 400V-50Hz, drückend.
 Die Standardausführung hat einen saugenden Lüfter

Bestellschlüssel

Technische Einzelheiten

Aluminiumkühlregister mit 17... 26 bar Betriebsdruck. Durch den hohen Betriebs druck eignet sich die Baureihe besonders für den Einbau in Rücklaufleitungen. Ein bauhinweise beachten!

Anwendung

Einsetzbar für Mineralöl, syntetisches Öl, Bio-Öl, HFA-, -B, -C und D-Flüssigkeiten. Einsatz mit Wasser nur nach Rücksprache mit uns.

Werkstoffe

Kühlerblock Aluminium (Resistplast- + Teflonbeschichtung lieferbar)

Ventilator Flügel Kunststoff, Nabe aus Aluminium Schutzgitter, Lüfterhaube + Füße Stahl - Farbe schwarz

Druck

A-12 - A-120 = 26 bar - A-135 - A-330 = 17 bar (nachDIN 50104)

Temperatur

maximal 120 °C ab 90 °C Öltemperatur drückenden Lüfter einsetzen.

Lautstärke

Schallmessungen DIN 45633 1,0 Meter Abstand

Motore

A-12 bis A-135 = 230/400 V - A-225 bis A-330 = 400/690 V (50 Hz)

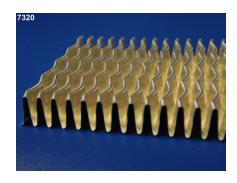
Schutzart IP 55 - Isolierklasse ISO-F - Umgebung max 40 °C

Einsetzbar für 380,415, 440 + 460 V-60 Hz

Für den 60 Hz-Betrieb werden die Lüfter auf die höhere

Drehzahl in der Luftleistung angepasst.

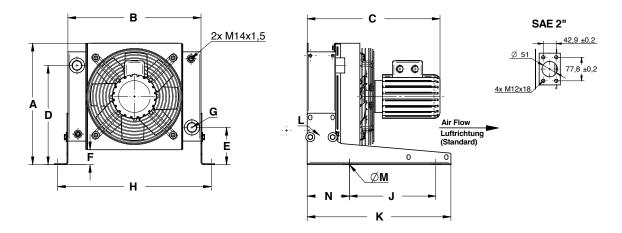
Bypass-Ventil

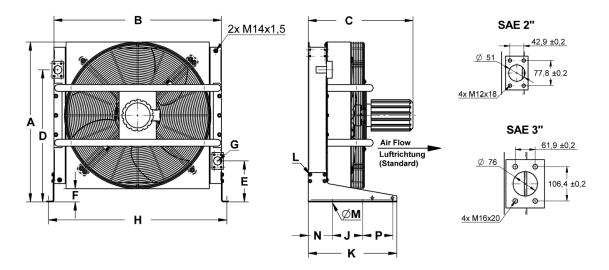

für die AY-Baureihe wählbar mit 1,0, 2,0, 4,0 6,0 + 8,0 bar.

Druckgeräterichtlinie Wärmetauscher gehören nach DGRL 2014/68EU Artikel 4, Absatz 3 nicht zu Druckgeräten

nach Artikel 2, und dürfen daher keine CE-Kennzeichnung tragen.

Lamellen


In der Standardausführung ist die A-Serie mit geraden geschlitzten Lamellen 7318 ausgestattet. Diese Lamelle ermöglicht den besten Wirkungsgrad. Für staubbelastete Einsatzfälle empfehlen wir die Baureihe AR mit Lamelle 7320 in glatt / gewellter Form. Hierbei ist die Leistungsminderung 5 % zu beachten.



Kühlergröße A-12 bis A-105

Kühlergröße A-120 bis A-330

Abmessungen

Kühler- größe	A	В	С	D	E	F	G BSP + SAE	н	J	К	L	M	N
12	391	450	410	324	107	40	G 1"	518	285	450	M 8	ø 14	140
16	402	440	440	328	123	49	G 1"	508	285	475	M 8	ø 14	140
25	496	600	520	427	105	36	G 1 1/4"	668	285	450	M 8	ø 14	140
35	601	700	510	532	104	36	G 1 1/4"	768	285	450	M 8	ø 14	140
45	613	690	540	538	123	48	G 1 1/4"	758	285	475	M 10	ø 14	140
60	666	790	515	583	123	43	G 1 1/4"	858	285	475	M 10	ø 14	140
75	791	940	625	668	205	83	G 1 1/2"	1008	2 x 187,5	550	M 10	ø 14	150
105	884	990	670	715	255	85	SAE 2"	1058	2 x 187,5	550	M 10	ø 14	150
120	992	1040	650	820	255	82	SAE 2"	1108	2 x 187,5	550	M 10	ø 14	150
135	989	1090	680	806	261	79	SAE 2"	1158	2 x 275	750	M 12	ø 14	175
225	1220	1240	810	1001	296	77	SAE 3"	1303	2 x 27	750	M 12	ø 14	175
330	1524	1340	885	1306	296	78	SAE 3"	1403	2 x 27	750	M 12	ø 14	175

Kühlleistung (Bei der Baureihe AR reduzieren sich die Kühlleistungen um 5 %)

Q	kW/K / Δ	þ	l	l	I	1	l	l	1	l	ĺ	
l/min	A-12	A-16	A-25	A-35	A-45	A-60	A-75	A-105	A-120	A-135	A-225	A-330
1	0,03/0,05	0,03/0,05	0,03/0,05									
25	0,23/0,17	0,26/0,13	0,38/0,26	0,49/0,26	0,54/0,15	0,59/0,18	0,66/0,17	0,68/0,25	0,69/0,11	0,70/0,13	0,70/1,14	0,70/0,10
50	0,27/0,34	0,31/0,27	0,47/0,48	0,66/0,49	0,75/0,27	0,86/0,33	1,05/0,31	1,17/0,29	1,22/0,20	1,28/0,24	1,37/0,23	1,39/0,19
75	0,28/0,52	0,33/0,45	0,51/0,71	0,73/0,71	0,84/0,40	0,98/0,49	1,23/0,44	1,45/0,41	1,54/0,28	1,65/0,34	1,92/0,33	2,04/0,28
100	0,29/0,73	0,34/0,58	0,55/0,94	0,80/0,93	0,92/0,52	1,10/0,64	1,40/0,56	1,72/0,52	1,85/0,36	2,03/0,43	2,47/0,43	2,68/0,38
150	0,31/1,18	0,36/0,69	0,59/1,41	0,87/1,39	1,00/0,79	1,20/0,96	1,56/0,81	2,01/0,73	2,19/0,50	2,44/0,60	3,23/0,60	3,71/0,55
200	0,31/1,70	0,36/1,42	0,61/1,92	0,91/1,88	1,05/1,09	1,27/1,31	1,66/1,08	2,18/0,94	2,40/0,65	2,69/0,77	3,75/0,75	4,54/0,70
250		0,37/1,94	0,62/2,45	0,94/2,39	1,08/1,41	1,31/1,67	1,72/1,35	2,30/1,14	2,54/0,78	2,86/0,95	4,13/0,91	5,18/0,83
300			0,63/3,06	0,96/2,94	1,10/1,76	1,35/2,07	1,76/1,63	2,40/1,35	2,64/0,92	2,95/1,12	4,42/1,06	5,68/0,96
350				0,97/3,50	1,12/2,14	1,37/2,50	1,79/1,93	2,46/1,55	2,72/1,06	3,08/1,30	4,64/1,21	6,10/1,09
400					1,13/2,55	1,39/2,95	1,82/2,24	2,52/1,76	2,78/1,20	3,15/1,49	4,84/1,37	6,45/1,23
450						1,40/3,38	1,84/2,56	2,56/1,96	2,83/1,34	3,20/1,67	4,99/1,52	6,73/1,37
500	Beisp	iel zur Kühle	· erauslegung	' 1	ı		1,85/2,89	2,59/2,16	2,86/1,47	3,25/1,86	5,12/1,67	6,97/1,50
550	Eingangswerte						2,62/2,37	2,90/1,61	3,30/2,05	5,23/1,82	7,19/1,63	
600		erlich Kühllei	istung		30 kW			2,65/2,57	2,93/1,75	3,33/2,24	5,33/1,97	7,39/1,76
650	Öldurd	nsatz rittstemperati	ur		00 l/min. 0 °C			2,67/2,78	2,96/1,89	3,36/2,44	5,40/2,12	7,56/1,89
700		ntrittstempera	atur	T-Luft = 3	0 °C			2,69/2,99	2,98/2,03	3,39/2,65	5,47/2,27	7,70/2,02

Ermittlung der spezifischen Kühlleistung

 $\begin{tabular}{lll} Eintritts-Temperatur-Differenz & ETD = & 70 - 30 = 40 \ k \\ Erforderliche spez. Kühlleistung & P/ETD & 130 / 40 = 3,25 \ kW / k \\ \end{tabular}$

Auswahl nach Tabelle und Ergebnis : A-225 mit Δp 0,75 bar

Die Druckverlustangaben gelten für ein Öl $\,$ der Viskositätsklasse ISO VG 46 bei einer mittleren Öltemperatur von 45 °C.

Technische Daten

Kühlergröße	Motorpannung (50 Hz)	Leistungsaufnah- me (kW) 50 Hz	Nennstrom 400 V (A)	Motorbauform	Motorbaugröße	60 Hz Betrieb möglich ja / nein	Lüfterdrehzahl (U/min)	Luftdurchsatz (m3 / h)	Schaldruckpegel (db (A) 1 m)	Schaldruckpegel (db (A) 1 m) Low Noise	Gesamtgewicht (kg)	Füllvolumen (Liter)	Betriebsdruck (bar)
12	230/400	0,37	0,9	B14	71	nein	3000	2000	74	59	20	2,3	26
16	230/400	0,37	0,9	B14	71	nein	3000	1650	74	59	24	3,5	26
25	230/400	0,55	1,5	B14	80M	nein	1500	3600	69	59	32	4,5	26
35	230/400	0,75	2,0	B14	80M	nein	1500	5600	70	61	43	5,0	26
45	230/400	0,75	2,0	B14	80M	nein	1500	5100	75	65	60	7,5	26
60	230/400	0,75	2,0	B14	80M	nein	1500	6300	71	61	69	9,0	26
75	230/400	0,75	2,0	B14	80M	nein	1500	7500	76	64	81	13,5	26
105	230/400	2,20	4,8	B14	90L	nein	1500	12000	78	69	100	15,0	26
120	230/400	2,20	4,8	B14	90L	nein	1500	12500	80	71	128	21,0	26
135	230/400	2,20	4,8	B14	90L	nein	1500	13400	80	71	148	26,0	17
225	400/690	5,50	11,1	B5	132S	nein	1500	24000	94	85	217	37,0	17
330	400/690	11,00	21,04	B5	160M	nein	1500	37500	90	83	343	51,0	17

Lautstärke Abnahme

In Abhängigkeit von der Entfernung zu einer Schallquelle ändert sich der Schallpegel. In der Tabelle ist die Abnahme der Lautstärke in db (A) bei zunehmender Entfernung angegeben.

Entfernung (m)	2	3	4	5	6	8	10	15	20	30
mit Reflexion	-	2	4	6	7	10	11	14	16	20
ohne Reflexion	3	10	12	14	16	18	20	24	26	30

Im 60 Hz Betrieb nimmt die Lautstärke um den Faktor 1,2 zu.

Lautstärke Zunahme

Anzahl der Geräuschquellen	2	3	4
Geräuschzunahme in db (A)	+3	+5	+6

Die Lautstärke kann nur am Aufstellungsort gemessen werden. Eine Schallpegelmessung ist von Raum-Reflexionen abhängig. Durch Reflexionen und Körperschall wird der Pegel verstärkt. Abweichungen von \pm 3 db (A) sind möglich.

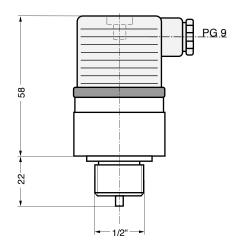
Spannung 60 Hz

Alle Kühler sind für 400 V/50 Hz konstruiert. Andere Spannungen sind unter Beachtung der Lüfterkennlinie und dem Kraftaufwand möglich.

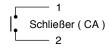
50 Hz Anwendung	60 Hz Anwendung	Nenndrehzahl	Nennleistung	Nennmoment	Anlaufmoment	Kippmoment	Anlauf-Strom
230 V	230 V	1,20	1,00	0,83	0,83	0,83	0,83
230 V	265 V	1,20	1,15	0,96	0,96	0,96	0,96
400 V	400 V	1,20	1,00	0,83	0,70	0,83	0,83
400 V	460 V	1,20	1,15	0,96	0,95	0,98	0,97

Bei den verwendeten Motoren ist der Frequenzumrichterbetrieb möglich. Die Netzfrequenz darf nicht unter 25 Hz geregelt werden, da die Eigenbelüftung des Motors nicht mehr gegeben ist, und der Motor überhitzten kann.

Umrechnungsfaktor über 0 N.N.


Bei Aufstellung über Meeresniveau muss die Leistungsminderung in Abhängigkeit zur Höhe ü.N.N. berücksichtigt werden.

Höhe	Dichte Luft kg/m3	Korrekturfaktor
0	1,225	1,00
500	1,168	0,98
1000	1,112	0,95
2000	1,011	0,91
3000	0,909	0,86
4000	0,819	0,82


Motorgrößen + Flanschmaße

Kühlergröße	Motor Art. Nr.	Baugröße	Bauform	Ø Flansch	Ø Lochkreis	Ø Welle	Wellenläng	Zentrierung
A-12 + 16	064178	71	B14A	105	85	14	30	70
A-25	064181	80	B14A	120	100	19	40	80
A-35, 45, 60 + 75	064179	80	B14A	120	100	19	40	80
A-105, 120 + 135	064180	90L	B14A	140	115	24	50	95
A-225	064182	132	B5	300	265	38	80	230
A-330	064183	160M	B5	350	300	42	110	250

Konttaktart

Anschlussbild

- Schaltpunkt fest eingestellt
- einfache Installation
- preiswerte Lösung
- Stecker nach DIN 43650

Die Thermostate der Baureihe "EBT" wurden zur Temperaturüberwachung in hydraulischen Anlagen und Zentralschmiersystemen entwickelt.

Sie dienen sie zur Ein / Aus-Schaltung von Heizstäben, Lüftermotoren an Öl / Luftkühlanlagen und Magnetventilen in der Wasserzufuhr für Rohrbündelwärmetauscher.

Beschreibung

Das Gehäuse der Baureihe "EBT" besteht aus Messing. Der Bimetallkontakt arbeitet als Schließer oder Öffner. Der Kontakt ist in einem Kunststoffsockel fest vergossen.

In Verbindung mit dem Anschluss-Stecker nach DIN 43650 sind die Thermostate für die Schutzart IP 65 zugelassen.

Technische Daten

max. Temperatur 120 °C max. Betriebsdruck 80 bar

Lebensdauer 100.000 Schaltungen Schaltleistungen 120 Vac - 15 A resistiv

240 Vac - 10 A resistiv 277 Vac - 7.2 A resistiv 24 Vdc - 5 A resistiv 12 Vdc - 10 A resistiv

 $\begin{array}{lll} \mbox{Schaltdifferenz} & \pm 5 \mbox{ °C} \\ \mbox{Schutzart} & \mbox{IP 65} \\ \mbox{Kontakte} & \mbox{versilbert} \end{array}$

Kontaktfunktion CA=Schließer; CC=Öffner Schaltpunkte 40, 50, 60, 70 + 80 °C

jeweils fest eingestellt

Stecker nach DIN 43650

Typenübersicht

CA = Schließer

Тур	Artikel - Nr.	Schaltpunkt	ø D
EBT-40-CA	071 002	40 °C	1/2 "
EBT-50-CA	071 003	50 °C	1/2 "
EBT-60-CA	071 004	60 °C	1/2 "
EBT-70-CA	071 005	70 °C	1/2 "
EBT-80-CA	071 006	80 °C	1/2 "

CC = Öffner

Тур	Artikel - Nr.	Schaltpunkt	ø D
EBT-40-CC	071 023	40 °C	1/2 "
EBT-50-CC	071 016	50 °C	1/2 "
EBT-60-CC	071 021	60 °C	1/2 "
EBT-70-CC	071 024	70 °C	1/2 "
EBT-80-CC	071 020	80 °C	1/2 "

Aufstellungsort so auswählen, dass die Kühlerfunktion nicht beeinträchtigt wird. Die Belästigung von Personen durch Zugluft oder zu hohem Geräuschpegel soll vermieden werden.

- · die Kühlluft muss ungehindert zu- und abströmen.
- die Rückströmung bereits erwärmter Luft vermeiden.
- In geschlossenen Räumen muss eine ausreichende Belüftung vorhanden sein.
- Achtung! Die Anlage kann die Raumtemperatur erh\u00f6hen!

Die Aufstellung im Freien wirkt sich günstig auf den Wirkungsgrad der Kühlanlage aus. Die elektrischen Antriebsmotore müssen dann gegen Witterungseinflüsse geschützt werden.

Niedrige Außentemperaturen erhöhen in der Startphase und bei Betriebsstillständen die Ölviskosität und somit auch den Druckverlust. Dadurch auftretende Druckspitzen müssen beachtet und verhindert werden.

Die Anlage sollte durch ein temperatur- und druckabhängiges Bypass-Ventil geschützt werden. Die Möglichkeit einer schnellen Systemerwärmung, kann über eine Durchlaufölerwärmung vor dem Kühler erforderlich sein.

Verschmutzte Umgebungsluft hat Schmutzablagerungen am Kühlnetz zur Folge. Die Kühlleistung wird dadurch gesenkt. Eine regelmäßige Wartung muss besonders bei ölnebelhaltiger Luft regelmäßig durchgeführt werden. (siehe auch Punkt " Wartung ")

Aufstellung erfolgt am besten senkrecht mittels der dafür vorgesehenen Befestigungsfüßen. Es ist darauf zu achten, dass sich die Entlüftungsschraube des Kühlers möglichst an der höchsten Stelle des Ölkreislaufs befindet. Zur Vermeidung von Umweltschäden muß dafür gesorgt werden, dass die bei einer eventuellen Undichtigkeit austretende Hydraulik- oder Schmierflüssigkeit weder in das Erdreich noch in die Kanalisation gelangen kann. Dichte Wannen mit Leckölmeldung können erforderlich sein.

Aufstellung Wandabstand Bei der Aufstellung in Räumen ist der Wandabstand zu beachten. Hier bei gilt die Faustregel mit 1,0 Meter Abstand für Kühler mit 1,0 m² Kühlernetz. Bei kleineren Kühlern kann der Abstand entsprechend geringer gewählt werden.

Bei Aufstellung in stark verschmutzten Räumen muss auf die Staubverwirbelung geachtet werden. Dies betrifft natürlich die Ansaugseite zum Kühler, aber auch die Luftaustrittsseite im Hinblick auf die Staubbelastung am Arbeitsplatz.

Montage Sicherheitsmaßnahmen sind zu beachten.

- Der Kühler muss mit flexiblen Elementen spannungsfrei eingebaut werden.
- Zu- und abführende Rohrleitungen sind spannungs- und vibrationsfrei mit der Kühlanlage zu verbinden.
- Die Übertragung von Vibrationen muss durch Lagerung auf Schwingmetall und Anschluss über elastische Schlauchleitungen sicher vermieden werden.
- Beim Einsatz der Kühler müssen Druckspitzen unbedingt beachtet werden! (Rücklaufleitungen beachten!)
- Druckstöße, Druckschwingungen und Pulsationen auf der Ölseite müssen verhindert werden.
- Thermische Schocks sind auszuschließen.

Der elektrische Anschluss erfolgt nach den einschlägigen VDE-Vorschriften. Die angelegte Spannung und die Fre-

quenz muss mit den Daten des Typenschildes übereinstimmen. Die Drehrichtung des Ventilators muß mit der Angabe auf dem Kühler verglichen werden. Für EEXe und EEXd-Motore bitte gesonderte Richtlinien bei uns anfordern.

Die Regelung der Öltemperatur erfolgt durch Ein- und Ausschalten des Ventilatormotors, oder über ein temperaturabhängiges Bypass-Ventil.

 Der Rückschaltwert beim Thermostat muss bei der Regelung beachtet werden!

Die Ein-/Ausregelung ist so zu wählen, daß die Temperatur der zu kühlenden Flüssigkeit nicht mehr als 5... 6°C schwankt.

• Die Eintrittstemperaturdifferenz zwischen Kühlmedium

und zu kühlendem Medium darf 65°C nicht übersteigen.

Sicherheitskapitel Solange der Kühler unter Druck steht, darf dieser nicht geöffnet werden. Nicht in das Schutzgitter greifen. Ein sich drehender Ventilator kann zu Verletzungen führen. Das Schutzgitter darf nur entfernt werden, wenn der elektrische Anschluss getrennt ist.

Besonders in Hydrauliksystemen treten Druckspitzen und

Pulsationen auf, die den Kühler über längere Zeiträume zerstören. Dies ist bei langen Kühlerzuleitungen und niedrigen Öltemperaturen besonders zu beachten.

Aus Sicherheitsgründen sollte in derartigen Fällen, um Druckspitzen zu vermeiden, die Kühlung im Nebenstrom mit eigener Pumpe (bei Bedarf mit E-Heizer) mit einer konstanter Umlaufmenge erfolgen.

 Federbelastete Überdruckventile sind zum Abbau von Druckspitzen und Druckschwingungen ungeeignet.

Inbetriebnahme Nach Befüllung der Anlage sollte diese entlüftet werden. Hierzu ist die Anlage kurzzeitig zu starten und die Entlüftungsschraube zu öffnen bis blasenfreies Medium austritt.

Funktionskontrolle Wird die verlangte Öltemperatur nach Inbetriebnahme nicht erreicht oder steigt die Öltemperatur mit zunehmender Betriebszeit an, ist es notwendig, die Ursachen zu ermitteln.

- · Ventilatordrehzahl und Drehrichtung
- Elektrischer Anschluss
- Menge des zu kühlenden Mediums
- Kühlluftzu- und abfuhr
- Verschmutzungszustand der Kühlflächen
- Eintrittstemperaturen des Kühlmediums und des zu kühlenden Mediums

Die Reinigung der Luftseite erfolgt mit Pressluft oder Wasser. Die Richtung des Reinigungsstrahles muß parallel zu den Lamellen und gegen die Luftrichtung der Kühlluft verlaufen. Die Reinigungswirkung kann durch den Zusatz von Reinigungsmitteln verstärkt werden.

Nur alu-verträgliche Reinigungsmittel verwenden

Öl- und fetthaltige Verschmutzungen können mit einem Dampf- oder Heißwasserstrahl abgewaschen werden. Auf die schonende Ausrichtung des Strahles ist ebenfalls zu achten. Der Antriebsmotor muss dabei geschützt werden.

Zur Reinigung der Ölseite muss die Anlage ausgebaut werden. Die Ölpassagen werden bei leichter Verschmutzung mit einer geeigneten Lösung gespült.

Die Spülzeit liegt bei 30 Minuten. Nach der Spülung muss die Spülflüssigkeit mit Pressluft restlos entfernt werden. Bei der Anwendung von Spülmitteln ist darauf zu achten, dass keine Belastung für die Umwelt auftritt. Beim Öffnen der Anlage sind Auffangbehälter bereit zu stellen. Die gesetzlichen Bestimmungen müssen beachtet und angewendet werden.

Transport Die Kühlanlagen müssen in geeigneter Verpackung vorsichtig transportiert werden. Schläge und Stöße müssen vermieden werden. Die Kühlanlagen in trockener Umgebung lagern.

Sonstiges Die hier aufgezählten Punkte sind Voraussetzung für einen möglichst störungsfreien Betrieb. Es gibt weitere Bedingungen, die einen Einfluss haben können. Ein Anspruch auf vollständige Aufzählung besteht nicht. Wenden Sie sich bitte in Zweifelsfällen direkt an uns.

Garantie Die Garantie für Öl- Luftkühlanlagen der T-Serie beträgt 6 Monate ab Inbetriebnahme. Nach Auslieferung jedoch längstens 9 Monate. Bei Verwendung von Wasser als zu kühlendes Medium sind Garantieansprüche ausgeschlossen. Elektrische und elektrisch bewegte Teile, wie Antriebsmotore und Thermostate sind von der Garantie immer ausgeschlossen. Defekte Teile müssen zur Überprüfung an uns zurückgeschickt werden.

A-Baureihe

Ersatzteilliste

Artikelstamm - Nummern für Ersatzteile zur A-Kühlerserie - 10/2016

Kühler-Typ	Kühlerblock	Lüfterkasten	Schutzgitter	Fuß	Motor	Motorhalter	Lüfter saugend
A-12	A12-C	1963.001.4010	8402.111.0000	1963.001.7200	8407.173.1503		8400.331.0290
A-16	A16-C	1963.001.4010	8402.111.0000	1963.002.7200	8407.173.1503		8400.330.0290
A-25	A-25-C	1963.003.4010	8402.078.0000	1963.001.7200	8407.173.2505		8400.314.0440
A-35	A35-C	1963.004.4010	8402.080.0000	1963.001.7200	8407.103.2307		8400.335.0524
A-45	A45-C	1963.004.4010	8402.080.0000	1963.002.7200	8407.103.2307		8400.304.0530
A-60	A60-C	1963.006.4010	8402.077.0000	1963.002.7200	8407.103.2307		8400.325.0600
A-75	A75-C	1963.007.4010	8402.079.0010	1963.007.7200	8407.103.2307		8400.368.0660
A-105	A105-C	1963.008.4010	8402.079.0000	1963.007.7200	8407.173.4422		8400.369.0660
A-120	A120-C	1963.009.4010	8402.603.0000	1963.007.7200	8407.173.4422	1963.009.5000	8400.381.0856
A-135	A135-C	1963.010.4010	8402.603.0000	1963.010.7200	8407.173.4422	1963.010.5000	8400.381.0856
A-225	A225-C	1963.011.4010	8402.608.0000	1963.010.7200	8407.132.3055	1963.011.5000	8400.318.1070
A-330	A330-C	1963.012.4010	8402.608.0000	1963.010.7200	8407.132.1110	1963.012.5000	8400.317.1070

Kühler-Typ	Lüfter drückend Lüfter 60 Hz	Motor LN	Adapterplatte	Fuß (LF) links	Fuß (LF) rechts
A-12	8400.328.0290 1963.511.4800	8407.173.1903		1963.301.7200	1963.301.7300
A-16	8400.327.0290	8407.173.1903		1963.302.7200	1963.302.7300
A-25	8400.347.0440 8400.314.0440	8407.173.1303		1963.301.7200	1963.301.7300
A-35	8400.332.0524	8407.173.1303		1963.301.7200	1963.301.7300
A-45	8400.305.0530	8407.173.1303		1963.302.7200	1963.302.7300
A-60	8400.329.0600 8400.341.0600	8407.173.1303		1963.302.7200	1963.302.7300
A-75	8400.365.0660	8407.173.1303		1963.307.7200	1963.307.7300
A-105	8400.375.0660 1963.515.4800	8407.103.3111		1963.307.7200	1963.307.7300
A-120	8400.383.0856	8407.103.3111		1963.307.7200	1963.307.7300
A-135	8400.383.0856	8407.103.3111		1963.310.7200	1963.310.7300
A-225	8400.347.1070	8407.170.1630		1963.310.7200	1963.310.7300
A-330	8400.352.1070	8407.132.6075		1963.310.7200	1963.310.7300

Kühlerblock = nackter Kühler ohne Anbauteile

Lüfter saugend = Standardlüfter

Lüfter 60 Hz = angepasster Lüfter für 60 Hz - Motore, der Leistung entsprechend

Motor LN = LowNoise mit kleinerer Drehzahl um den Geräuschpegel zu minimieren